Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Linux Device Drivers Development
  • Toc
  • feedback
Linux Device Drivers Development

Linux Device Drivers Development

By : John Madieu
4 (30)
close
Linux Device Drivers Development

Linux Device Drivers Development

4 (30)
By: John Madieu

Overview of this book

Linux kernel is a complex, portable, modular and widely used piece of software, running on around 80% of servers and embedded systems in more than half of devices throughout the World. Device drivers play a critical role in how well a Linux system performs. As Linux has turned out to be one of the most popular operating systems used, the interest in developing proprietary device drivers is also increasing steadily. This book will initially help you understand the basics of drivers as well as prepare for the long journey through the Linux Kernel. This book then covers drivers development based on various Linux subsystems such as memory management, PWM, RTC, IIO, IRQ management, and so on. The book also offers a practical approach on direct memory access and network device drivers. By the end of this book, you will be comfortable with the concept of device driver development and will be in a position to write any device driver from scratch using the latest kernel version (v4.13 at the time of writing this book).
Table of Contents (23 chapters)
close
Free Chapter
1
Introduction to Kernel Development

DMA – Direct Memory Access

DMA is a feature of computer systems that allows devices to access the main system memory RAM without CPU intervention, which then allows them to devote themselves to other tasks. One typically uses it for accelerating network traffic, but it supports any kind of copy.

The DMA controller is the peripheral responsible for DMA management. One mostly finds it in modern processors and microcontrollers. DMA is a feature used to perform memory read and write operations without stealing CPU cycles. When one needs to transfer a block of data, the processor feeds the DMA controller with the source and destination addresses and the total number of bytes. The DMA controller then transfers the data from the source to the destination automatically, without stealing CPU cycles. When the number of bytes remaining reaches zero, the block transfer ends.

In this...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete