Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Linux Device Drivers Development
  • Toc
  • feedback
Linux Device Drivers Development

Linux Device Drivers Development

By : John Madieu
4 (30)
close
Linux Device Drivers Development

Linux Device Drivers Development

4 (30)
By: John Madieu

Overview of this book

Linux kernel is a complex, portable, modular and widely used piece of software, running on around 80% of servers and embedded systems in more than half of devices throughout the World. Device drivers play a critical role in how well a Linux system performs. As Linux has turned out to be one of the most popular operating systems used, the interest in developing proprietary device drivers is also increasing steadily. This book will initially help you understand the basics of drivers as well as prepare for the long journey through the Linux Kernel. This book then covers drivers development based on various Linux subsystems such as memory management, PWM, RTC, IIO, IRQ management, and so on. The book also offers a practical approach on direct memory access and network device drivers. By the end of this book, you will be comfortable with the concept of device driver development and will be in a position to write any device driver from scratch using the latest kernel version (v4.13 at the time of writing this book).
Table of Contents (23 chapters)
close
Free Chapter
1
Introduction to Kernel Development

Work with I/O memory to talk with hardware

Apart from performing data RAM-oriented operations, you can perform I/O memory transactions to talk with the hardware. When it comes to the access device's register, the kernel offers two possibilities depending on the system architecture:

  • Through the I/O ports: This is also called Port Input Output (PIO). Registers are accessible through a dedicated bus, and specific instructions (in and out, in assembler generally) are needed to access those registers. This is the case on x86 architectures.
  • Memory Mapped Input Output (MMIO): This is the most common and most used method. The device's registers are mapped to memory. Simply read and write to a particular address to write to the registers of the device. This is the case on ARM architectures.
...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete