Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Natural Language Processing with TensorFlow
  • Table Of Contents Toc
  • Feedback & Rating feedback
Natural Language Processing with TensorFlow

Natural Language Processing with TensorFlow

By : Saad, Ganegedara
4.5 (10)
close
close
Natural Language Processing with TensorFlow

Natural Language Processing with TensorFlow

4.5 (10)
By: Saad, Ganegedara

Overview of this book

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Table of Contents (14 chapters)
close
close
13
Index

Implementing an LSTM


Here we will discuss the details of the LSTM implementation. Though there are sublibraries in TensorFlow that have already implemented ready-to-go LSTMs, we will implement one from scratch. This will be very valuable, as in the real world there might be situations where you cannot use these off-the-shelf components directly. This code is available in the lstm_for_text_generation.ipynb exercise located in the ch8 folder of the exercises. However, we will also include an exercise where we will show how to use the existing TensorFlow RNN API that will be available in lstm_word2vec_rnn_api.ipynb, located in the same folder. Here we will discuss the code available in the lstm_for_text_generation.ipynb file.

First, we will discuss the hyperparameters and their effects that are used for the LSTM. Thereafter, we will discuss the parameters (weights and biases) required to implement the LSTM. We will then discuss how these parameters are used to write the operations taking place...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY