Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Natural Language Processing with TensorFlow
  • Toc
  • feedback
Natural Language Processing with TensorFlow

Natural Language Processing with TensorFlow

By : Saad, Ganegedara
4.5 (10)
close
Natural Language Processing with TensorFlow

Natural Language Processing with TensorFlow

4.5 (10)
By: Saad, Ganegedara

Overview of this book

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Table of Contents (14 chapters)
close
13
Index

Tensor/matrix operations

Transpose

Transpose is an important operation defined for matrices or tensors. For a matrix, the transpose is defined as follows:

Transpose

Here, AT denotes the transpose of A.

An example of the transpose operation can be illustrated as follows:

Transpose

After the transpose operation:

Transpose

For a tensor, transpose can be seen as permuting the dimensions order. For example, let's define a tensor S, as shown here:

Transpose

Now a transpose operation (out of many) can be defined as follows:

Transpose

Multiplication

Matrix multiplication is another important operation that appears quite frequently in linear algebra.

Given the matrices Multiplication and Multiplication, the multiplication of A and B is defined as follows:

Multiplication

Here, Multiplication.

Consider this example:

Multiplication
Multiplication

This gives

Multiplication

, and the value of C is as follows:

Multiplication

Element-wise multiplication

Element-wise matrix multiplication (or the Hadamard product) is computed for two matrices that have the same shape. Given the matrices Element-wise multiplication and Element-wise multiplication, the element-wise multiplication of A and B is defined as follows...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete