
Natural Language Processing with TensorFlow
By :

We used the raw TensorFlow API for all our implementations in this book for better transparency of the actual functionality of the models and for a better learning experience. However, TensorFlow has various libraries that hide all the fine-grained details of the implementations. This allows users to implement sequence-to-sequence models like the Neural Machine Translation (NMT) model we saw in Chapter 10, Sequence-to-Sequence Learning – Neural Machine Translation with fewer lines of code and without worrying about more specific technical details about how they work. Knowledge about these libraries is important as they provide a much cleaner way of using these models in production code or researching beyond the existing methods. Therefore, we will go through a quick introduction of how to use the TensorFlow seq2seq
library. This code is available as an exercise in the seq2seq_nmt.ipynb
file.