Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Natural Language Processing with TensorFlow
  • Toc
  • feedback
Natural Language Processing with TensorFlow

Natural Language Processing with TensorFlow

By : Saad, Ganegedara
4.5 (10)
close
Natural Language Processing with TensorFlow

Natural Language Processing with TensorFlow

4.5 (10)
By: Saad, Ganegedara

Overview of this book

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.
Table of Contents (14 chapters)
close
13
Index

Newer machine learning models


Now we will discuss several newer machine learning models that have emerged to resolve various limitations of the current models (for example, standard LSTMs). One such model is Phased LSTMs that allow us to pay attention to very specific events that happen in future during learning. Another model is Dilated RNNs (DRNNs), which provides a way to model complex dependencies present in the inputs. DRNNs also enable parallel computation of unrolled RNNs, compared with naïvely iterating through the unrolled RNNs.

Phased LSTM

Current LSTM networks have shown a remarkable performance in many of the sequential learning tasks. However, they are not well-suited for processing irregularly timed data, such as data provided by event-driven sensors. This is mainly because no matter whether an event is transpired or not, an LSTM's cell state and the hidden states are continuously updated. This behavior can cause the LSTM to ignore special events that might rarely or irregularly...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete