Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Drone Development from Concept to Flight
  • Table Of Contents Toc
  • Feedback & Rating feedback
Drone Development from Concept to Flight

Drone Development from Concept to Flight

By : Sumit Sharma
5 (28)
close
close
Drone Development from Concept to Flight

Drone Development from Concept to Flight

5 (28)
By: Sumit Sharma

Overview of this book

Unlock opportunities in the growing UAV market where drones are revolutionizing diverse sectors like agriculture, surveying, and the military. Using the vast experience of the author in drone domain, this book provides step-by-step guidance through the complete drone development life cycle, from concept to pilot stage, prototyping, and ultimately, a market-ready product, with domain-specific applications. Starting with an introduction to unmanned systems, principles of drone flight, and it's motion in 3D space, this book shows you how to design a propulsion system tailored to your drone’s needs. You’ll then get hands on with the entire drone assembly process, covering airframe, components, and wiring. Next, you’ll enhance drone connectivity and navigation with communication devices, such as RFD900, Herelink, and H-16 Pro GCS and hardware protocols like I2C, and UART. The book also guides you in using the open-source flight software Ardupilot and PX4, along with firmware architecture and PID tuning for advanced control. Additionally, you’ll go learn about AeroGCS, Mission Planner, and UGCS ground control stations, tips for maiden flight and log analysis for optimizing performance while building a custom survey drone with a 60-min endurance, 10km range, live video feed, and photography options. By the end of this book, you’ll be equipped with all you need to build and fly your own drones and UAVs.
Table of Contents (19 chapters)
close
close
1
Part 1: Fundamentals of Flight Engineering
6
Part 2: System Conceptualization and Avionics Development
11
Part 3: Configuration, Calibrations, Flying, and Log Analysis

Avionics systems and subsystems of drones

Post the mechanical system comes the avionics system, which is fitted into the mechanical system at appropriate required places to exert thrust and other forces, keeping the center of gravity balanced. These avionics systems include sensors and actuators powered by the power system to exert the necessary force where required and get the necessary task done by the drone:

Figure 1.17 – Avionics components

Figure 1.17 – Avionics components

In the following sections, we will have a glance at the major avionics systems and subsystems of a drone that are interrelated.

The propulsion system or drive train of a drone

The propulsion system is responsible for creating the necessary force to lift the system into the air, maintaining the ratios of lift to weight. This is also a reason to maintain stability in the air, fly at high altitudes, and provide speed to the system. This is the most important part and initial building block of drone systems. It also helps in maintaining electrical stability in the system:

Figure 1.18 – A power train

Figure 1.18 – A power train

It consists of the following primary parts:

  • Motors: These are the primary components of the propulsion system. These are brushless DC (BLDC) motors, which are far more efficient and lower-power-consumption motors with a long life. These motors rotate at high speed with propellers and produce the necessary thrust to lift the system in the air. Most of the power of the battery is consumed by these motors. These motors are the primary actuators to create motion in the 3D space, travel from one position to another, and lift loads:
Figure 1.19 – A BLDC motor

Figure 1.19 – A BLDC motor

  • Propellers: Propellers are key thrust generators in the multirotor. These are mounted on the motors using screws or other mechanisms. Propellers are manufactured with lightweight materials in such a way that when rotated at high speed, they push the air downward, produce thrust, and lift the system upward. Each propeller produces a set amount of thrust when rotated at a desired RPM, which we will see in the coming chapters:
Figure 1.20 – Propellers

Figure 1.20 – Propellers

The power system of drones

The power system is the system that is responsible for powering the whole drone with its payload and other peripheral devices. This is the key system that keeps a drone powered, helps in getting the required endurance, and nullifies the effects of high wind or heavy maneuvers. Certain buck-and-boost converters and filters are added to step up and down voltages when required, and current consumption is greater.

These are the major components of the power system of drones:

  • Battery: The battery is the most important part of the system. It serves as a key source of power delivery to the system. All systems and subsystems are powered by the battery. The battery must be capable of delivering power as required by the system without failure and serve the current delivery. It is also responsible for deciding the endurance of the drone:
Figure 1.21 – A battery

Figure 1.21 – A battery

  • Power distribution board: The power distribution board, as the name suggests, helps to distribute power to different systems. High-power-consumption elements such as motors take power through this board, and it is evenly distributed among them. A few more filtering elements are added, such as a capacitor to prevent any part from burning due to surges and extra load current:
Figure 1.22 – A power distribution board

Figure 1.22 – A power distribution board

  • Buck-and-boost converters: Buck-and-boost converters are used in the circuitry to step up or down the voltage as required by peripheral devices and satisfy the needs of current requirements. These are used as per the power specifications of the payload:
Figure 1.23 – A step-down converter

Figure 1.23 – A step-down converter

Command and control system

This is a system that helps connect a drone for command and control and helps to keep the drone in check and in control. It is only due to this system that drones remain in control and can be controlled and operated in the way the pilot wants. This system also helps to keep drone health in check and enables real-time monitoring of sensor data.

The major parts that together make a communication system are the following:

  • Remote control (RC): An RC device, or remote controller, is used to fly the drone under the visual LOS (VLOS). It helps to manually fly the system to any place and any orientation. It helps to change the mode of flying and also take control of the system during autonomous missions.

    However, it does not have live monitoring of the system’s sensor data and cannot see the live health of the system:

Figure 1.24 – An RC

Figure 1.24 – An RC

  • Ground control station (GCS): A GCS is an integrated control station that is used for system configuration and ground testing of systems, as well as to keep a check on system health and sensor data, and for command and control over drones for LOS and beyond VLOS (BVLOS) applications. A GCS is responsible for mission planning and execution in a completely autonomous mode. It is also responsible for the auto-tuning of systems for smoother flying:
Figure 1.25 – A handheld GCS

Figure 1.25 – A handheld GCS

  • Radio modem: A radio modem is a prime device used to communicate between a GCS and a drone. The range of the system depends upon the range at which radio modems communicate. It helps as a key communication link to control and command drones from the GCS. The radio modem helps to provide security to the link and transmit signals on which the GCS and drones communicate:
Figure 1.26 – A radio modem

Figure 1.26 – A radio modem

  • Antennas: Antennas play a key role in signal transmission and propagation. The antenna gains and orientation decide the range of the system and the degree to which it can move in the air. The type of antenna is an important parameter in deciding the range of a drone or bird, which we will see in later chapters:
Figure 1.27 – An antenna

Figure 1.27 – An antenna

  • Navigation system: Post power, propulsion, and communication comes the navigation system. This navigation system is only helpful when driving the system in autonomous mode. The navigation system helps the drone to decide the direction and coordinates and moves in a particular direction autonomously or as guided in the mission.

    The drone is able to move in the selected paths and directions with the help of the navigation system, which is supported by built-in sensors. Major components that enable navigation systems are the following:

    • GPS: The GPS is a key component of the navigation system. The GPS used in drones has a GNSS such as Galileo, BeiDou, and other similar navigation systems embedded in it, which helps in getting real-time coordinates of the drone to display in the GCS and helps the pilot in getting real-time maps and locations. The same GPS coordinates are used by mission-planning software to decide the autonomous path of the drone and by the drone to navigate to the provided GPS coordinates. The take-off coordinates are also saved into the drone, which helps the drone to do Return to Launch (RTL) while in failsafe conditions:
Figure 1.28 – A GPS

Figure 1.28 – A GPS

  • Compass or magnetometer: A compass or magnetometer is a crucial component of the drone navigation system. A GPS gives you the coordinates of the system and the desired go-to location, but a compass gives you the direction in which the drone travels. Drones travel to particular coordinates with the guidance of a compass. The compass gives the heading of the drone where the nose of the drone travels. The compass needs to be calibrated with respect to the magnetic field of the space for proper navigation:
Figure 1.29 – A magnetometer

Figure 1.29 – A magnetometer

  • Processing unit or flight controller: The flight controller is the central processing unit (CPU) of the drone. This is called the brain of the drone. The flight controller receives the sensor data from the inbuilt sensors and peripheral sensors and delivers it to the actuators and motors, thus making the drone fly in manual as well as auto mode.

    The flight controller is programmed to behave in a particular manner in various flying modes and missions and under certain conditions, which we will see in the coming chapters:

Figure 1.30 – A flight controller

Figure 1.30 – A flight controller

  • Payload: A flying machine is to be used for some application and work for which it is designed and developed. The device that executes that particular work while being on the drone is called a payload. For example, a day/night camera is a payload for day/night surveillance (see Figure 1.31), a spray tank is a payload for an agriculture spray drone (see Figure 1.32), and an RGB sensor is a payload for a survey drone.

    The payload is the only object that does the job a drone is intended to do. We will see working with similar payloads later in this book for different applications:

Figure 1.31 – A camera payload

Figure 1.31 – A camera payload

Figure 1.32 – A spray tank as a payload

Figure 1.32 – A spray tank as a payload

These are some of the main components that are used in a drone system. In a later chapter, we will look at the specifications used for each of the components and how they can be best optimized to build a drone for a particular specification.

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY