Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Responsible AI in the Enterprise
  • Table Of Contents Toc
  • Feedback & Rating feedback
Responsible AI in the Enterprise

Responsible AI in the Enterprise

By : Adnan Masood, Dawe
5 (8)
close
close
Responsible AI in the Enterprise

Responsible AI in the Enterprise

5 (8)
By: Adnan Masood, Dawe

Overview of this book

Responsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance. Throughout the book, you’ll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You’ll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You’ll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you’ll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You’ll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations. By the end of this book, you’ll be well-equipped with tools and techniques to create transparent and accountable machine learning models.
Table of Contents (16 chapters)
close
close
1
Part 1: Bigot in the Machine – A Primer
4
Part 2: Enterprise Risk Observability Model Governance
9
Part 3: Explainable AI in Action

Taxonomy of ML explainability methods

A taxonomy is a system for classifying things: the benefit of building a taxonomy is that it helps us to understand and organize information in a useful manner. Due to the vast amount of research interest in the area of ML explainability, you will encounter different taxonomies around ML interpretability methods, as well as a variety of terms. Let’s get some of the fundamental terms explained before moving forward.

So far, we have established that an ML explainability method is a way of understanding how an ML model works. The benefit of different types of model interpretability methods is that they can help us to understand the behavior of complex ML models. To build upon this mental model of model interpretability, we can divide it into four distinct types.

  • Model interpretability by scope
  • Model interpretability by method
  • Model interpretability by outcome
  • Model interpretability by time of information extraction
  • ...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY