Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Responsible AI in the Enterprise
  • Table Of Contents Toc
  • Feedback & Rating feedback
Responsible AI in the Enterprise

Responsible AI in the Enterprise

By : Adnan Masood, Dawe
5 (8)
close
close
Responsible AI in the Enterprise

Responsible AI in the Enterprise

5 (8)
By: Adnan Masood, Dawe

Overview of this book

Responsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance. Throughout the book, you’ll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You’ll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You’ll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you’ll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You’ll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations. By the end of this book, you’ll be well-equipped with tools and techniques to create transparent and accountable machine learning models.
Table of Contents (16 chapters)
close
close
1
Part 1: Bigot in the Machine – A Primer
4
Part 2: Enterprise Risk Observability Model Governance
9
Part 3: Explainable AI in Action

Getting started with hyperscaler interpretability toolkits

Hyperscalers have built significant offerings to provide Explainable AI to address bias and model quality and assess risk exposure. These tools are typically built around a fairness engine, and explainability visual interfaces are used for a variety of different enterprises in an industry-agnostic manner. Their MLOps platforms also help automate AI monitoring to ensure responsible AI outcomes and synthesized data as a means of fairness, privacy, confidentiality, and bias mitigation.

There is a growing need for AI explainability tools that can help users understand how AI algorithms make decisions, especially for subject-matter experts. Explainable AI tools provide insights into the inner workings of an AI system, allowing users to see how the algorithms arrive at their results. We have provided a checklist for selecting an explainability platform here.

Who would use these Explainable AI toolkits?

Explainable AI toolkits...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY