Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Responsible AI in the Enterprise
  • Table Of Contents Toc
  • Feedback & Rating feedback
Responsible AI in the Enterprise

Responsible AI in the Enterprise

By : Adnan Masood, Dawe
5 (8)
close
close
Responsible AI in the Enterprise

Responsible AI in the Enterprise

5 (8)
By: Adnan Masood, Dawe

Overview of this book

Responsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance. Throughout the book, you’ll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You’ll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You’ll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you’ll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You’ll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations. By the end of this book, you’ll be well-equipped with tools and techniques to create transparent and accountable machine learning models.
Table of Contents (16 chapters)
close
close
1
Part 1: Bigot in the Machine – A Primer
4
Part 2: Enterprise Risk Observability Model Governance
9
Part 3: Explainable AI in Action

Explainable and Ethical AI Primer

“The greatest thing by far is to be a master of metaphor; it is the one thing that cannot be learnt from others; and it is also a sign of genius, since a good metaphor implies an intuitive perception of the similarity in the dissimilar.”

– Aristotle

“Ethics is in origin the art of recommending to others the sacrifices required for cooperation with oneself.”

– Bertrand Russell

“I am in the camp that is concerned about super intelligence.”

– Bill Gates

“The upheavals [of artificial intelligence] can escalate quickly and become scarier and even cataclysmic. Imagine how a medical robot, originally programmed to rid cancer, could conclude that the best way to obliterate cancer is to exterminate humans who are genetically prone to the disease.”

– Nick Bilton, tech columnist for The New York Times

This introductory chapter presents a detailed overview of the key terms related to explainable and interpretable AI that paves the way for further reading.

In this chapter, you will get familiar with safe, ethical, explainable, robust, transparent, auditable, and interpretable machine learning terminologies. This should provide both a solid overview for novices and serve as a reference to experienced machine learning practitioners.

This chapter covers the following topics:

  • Building the case for AI governance
  • Key terminologies – explainability, interpretability, fairness, explicability, safety, trustworthiness, and ethics
  • Automating bias – the network effect
  • The case for explainability and black-box apologetics

Artificial intelligence (AI) and machine learning have significantly changed the course of our lives. The technological advancements aided by their capabilities have a deep impact on our society, economy, politics, and virtually every spectrum of our lives. COVID-19, being the de facto chief agent of transformation, has dramatically increased the pace of how automation shapes our modern enterprises. It would be both an understatement and a cliché to say that we live in unprecedented times.

The increased speed of transformation, however, doesn’t come without its perils. Handing things out to machines has its inherent cost and challenges; some of these are quite obvious, while other issues become apparent as the given AI system is used, and some, possibly many, have yet to be discovered. The evolving future of the workplace is not only based on automating mundane, repetitive, and dangerous jobs but also on taking away the power of human decision-making. Automation is rapidly becoming a proxy for human decision-making in a variety of ways. From providing movies, news, books, and product recommendations to deciding who can get paroled or get admitted to college, machines are slowly taking away things that used to be considered uniquely human. Ignoring the typical doomsday elephants in the room (insert your favorite dystopian cyborg movie plot here), the biggest threat of these technological black boxes is the amplification and perpetuation of systemic biases through AI models.

Typically, when a human bias gets introduced, perpetuated, or reinforced among individuals, for the most part, there are opposing factors and corrective actions within society to bring some sort of balance and also limit the widescale spread of such unfairness or prejudice. While carefully avoiding the tempting traps of social sciences, politics, or ethical dilemmas, purely from a technical standpoint, it is safe to say that we have not seen experimentation at this scale in human history. The narrative can be subtle, nudged by models optimizing their cost functions, and then perpetuated by either reinforcing ideas or the sheer reason of utility. We have repeatedly seen that humans will trade privacy for convenience – anyone accepting End User Licensing Agreements (EULAs) without ever reading them, feel free to put your hands down.

While some have called for a pause in the advancement of cutting-edge AI while governments, industry, and other relevant stakeholders globally seek to ensure AI is fully understood and accordingly controlled, this does not help those in an enterprise who wish to benefit from less contentious AI systems. As enterprises mature in the data and AI space, it is entirely possible for them to ensure that the AI they develop and deploy is safe, fair, and ethical. We believe that, as policymakers, executives, managers, developers, ethicists, auditors, technologists, designers, engineers, and scientists, it is crucial for us to internalize the opportunities and threats presented by modern-day digital transformation aided by AI and machine learning. Let’s dive in!

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY