Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Getting Started with Amazon SageMaker Studio
  • Table Of Contents Toc
  • Feedback & Rating feedback
Getting Started with Amazon SageMaker Studio

Getting Started with Amazon SageMaker Studio

By : Michael Hsieh
4.8 (13)
close
close
Getting Started with Amazon SageMaker Studio

Getting Started with Amazon SageMaker Studio

4.8 (13)
By: Michael Hsieh

Overview of this book

Amazon SageMaker Studio is the first integrated development environment (IDE) for machine learning (ML) and is designed to integrate ML workflows: data preparation, feature engineering, statistical bias detection, automated machine learning (AutoML), training, hosting, ML explainability, monitoring, and MLOps in one environment. In this book, you'll start by exploring the features available in Amazon SageMaker Studio to analyze data, develop ML models, and productionize models to meet your goals. As you progress, you will learn how these features work together to address common challenges when building ML models in production. After that, you'll understand how to effectively scale and operationalize the ML life cycle using SageMaker Studio. By the end of this book, you'll have learned ML best practices regarding Amazon SageMaker Studio, as well as being able to improve productivity in the ML development life cycle and build and deploy models easily for your ML use cases.
Table of Contents (16 chapters)
close
close
1
Part 1 – Introduction to Machine Learning on Amazon SageMaker Studio
4
Part 2 – End-to-End Machine Learning Life Cycle with SageMaker Studio
11
Part 3 – The Production and Operation of Machine Learning with SageMaker Studio

Exporting data for ML training

SageMaker Data Wrangler supports the following export options: Save to S3, Pipeline, Python Code, and Feature Store. The data transformations we have applied so far are not really applied to the data yet. The transformation steps need to be executed to get the final transformed data. When we export our flow file with the preceding options, SageMaker Data Wrangler automatically generates code and notebooks to guide you through the execution process so that we do not have to write any code, but it leaves flexibility for us to customize the code.

The four export options satisfy many use cases. Save to S3 is an obvious one and offers lots of flexibility. If you would like to get the transformed data in an S3 bucket so that you can train an ML model in Amazon SageMaker, you can also download it locally from S3 and import it to other tools if you need to. The Pipeline option creates a SageMaker pipeline that can easily be called a repeatable workflow. Such...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY