Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Getting Started with Amazon SageMaker Studio
  • Table Of Contents Toc
  • Feedback & Rating feedback
Getting Started with Amazon SageMaker Studio

Getting Started with Amazon SageMaker Studio

By : Michael Hsieh
4.8 (13)
close
close
Getting Started with Amazon SageMaker Studio

Getting Started with Amazon SageMaker Studio

4.8 (13)
By: Michael Hsieh

Overview of this book

Amazon SageMaker Studio is the first integrated development environment (IDE) for machine learning (ML) and is designed to integrate ML workflows: data preparation, feature engineering, statistical bias detection, automated machine learning (AutoML), training, hosting, ML explainability, monitoring, and MLOps in one environment. In this book, you'll start by exploring the features available in Amazon SageMaker Studio to analyze data, develop ML models, and productionize models to meet your goals. As you progress, you will learn how these features work together to address common challenges when building ML models in production. After that, you'll understand how to effectively scale and operationalize the ML life cycle using SageMaker Studio. By the end of this book, you'll have learned ML best practices regarding Amazon SageMaker Studio, as well as being able to improve productivity in the ML development life cycle and build and deploy models easily for your ML use cases.
Table of Contents (16 chapters)
close
close
1
Part 1 – Introduction to Machine Learning on Amazon SageMaker Studio
4
Part 2 – End-to-End Machine Learning Life Cycle with SageMaker Studio
11
Part 3 – The Production and Operation of Machine Learning with SageMaker Studio

Understanding ML operations and CI/CD

In the ML lifecycle, there are many steps that require a skilled data scientist's hands-on interaction throughout, such as wrangling the dataset, training, and evaluating a model. These manual steps could affect an ML team's operations and speed to deploy models in production. Imagine your model training job takes a long time and finishes in the middle of the night. You either have to wait for your first data scientist to come in during the day to evaluate the model and deploy the model into production or have to employ an on-call rotation to have someone on standby at all times to monitor the model training and deployment. But neither option is ideal if you want an effective and efficient ML lifecycle.

Machine Learning Operations (MLOps) is critical to a team that wants to stay lean and scale well. MLOps helps you streamline and reduce manual human intervention as much as possible. It helps transform your ML lifecycle to enterprise...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY