Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning with the Elastic Stack
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning with the Elastic Stack

Machine Learning with the Elastic Stack

By : Rich Collier, Camilla Montonen, Bahaaldine Azarmi
5 (9)
close
close
Machine Learning with the Elastic Stack

Machine Learning with the Elastic Stack

5 (9)
By: Rich Collier, Camilla Montonen, Bahaaldine Azarmi

Overview of this book

Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection. The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with. By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform.
Table of Contents (19 chapters)
close
close
1
Section 1 – Getting Started with Machine Learning with Elastic Stack
4
Section 2 – Time Series Analysis – Anomaly Detection and Forecasting
11
Section 3 – Data Frame Analysis

Chapter 6: Alerting on ML Analysis

The previous chapter (Chapter 5, Interpreting Results) explained in depth how anomaly detection and forecasting results are stored in Elasticsearch indices. This gives us the proper background to now create proactive, actionable, and informative alerts on those results.

At the time of writing this book, we find ourselves at an inflection point. For several years, Elastic ML has relied on the alerting capabilities of Watcher (a component of Elasticsearch) as this was the exclusive mechanism to alert on data. However, a new platform of alerting has been designed as part of Kibana (and was deemed GA in v7.11) and this new approach will be the primary mechanism of alerting moving forward.

There are still some interesting pieces of functionality that Watcher can provide that are not yet available in Kibana alerting. As such, this chapter will showcase the usage of alerts using both Kibana alerting and Watcher. Depending on your needs, you can decide...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY