
Machine Learning with the Elastic Stack
By :

ML, while a very broad topic that encompasses everything from self-driving cars to game-winning computer programs, was a natural place to look for a solution. If you realize that most of the requirements of effective application monitoring or security threat hunting are merely variations on the theme of find me something that is different from normal, then the discipline of anomaly detection emerges as the natural place to begin using ML techniques to solve these problems for IT professionals.
The science of anomaly detection is certainly nothing new, however. Many very smart people have researched and employed a variety of algorithms and techniques for many years. However, the practical application of anomaly detection for IT data poses some interesting constraints that make the otherwise academically worthy algorithms inappropriate for the job. These include the following:
So, now we are getting to the real meat of the challenge—creating a fast, scalable, accurate, low-cost anomaly detection solution that everyone will use and love because it works flawlessly. No problem!
As daunting as that sounds, Prelert founder and CTO Steve Dodson took on that challenge back in 2010. While Dodson certainly brought his academic chops to the table, the technology that would eventually become Elastic ML had its genesis in the throes of trying to solve real IT application problems—the first being a pesky intermittent outage in a trading platform at a major London finance company. Dodson, and a handful of engineers who joined the venture, helped the bank's team use the anomaly detection technology to automatically surface only the needles in the haystacks that allowed the analysts to focus on the small set of relevant metrics and log messages that were going awry. The identification of the root cause (a failing service whose recovery caused a cascade of subsequent network problems that wreaked havoc) ultimately brought stability to the application and prevented the need for the bank to spend lots of money on the previous solution, which was an unplanned, costly network upgrade.
As time passed, however, it became clear that even that initial success was only the beginning. A few years and a few thousand real-world use cases later, the marriage of Prelert and Elastic was a natural one—a combination of a platform making big data easily accessible and technology that helped overcome the limitations of human analysis.
Fast forward to 2021, a full 5 years after the joining of forces, and Elastic ML has come a long way in the maturation and expansion of capabilities of the ML platform. This second edition of the book encapsulates the updates made to Elastic ML over the years, including the introduction of integrations into several of the Elastic solutions around observability and security. This second edition also includes the introduction of "data frame analytics," which is discussed extensively in the third part of the book. In order to get a grounded, innate understanding of how Elastic ML works, we first need to get to grips with some terminology and concepts to understand things further.
Change the font size
Change margin width
Change background colour