Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with the Elastic Stack
  • Toc
  • feedback
Machine Learning with the Elastic Stack

Machine Learning with the Elastic Stack

By : Rich Collier, Camilla Montonen, Bahaaldine Azarmi
5 (9)
close
Machine Learning with the Elastic Stack

Machine Learning with the Elastic Stack

5 (9)
By: Rich Collier, Camilla Montonen, Bahaaldine Azarmi

Overview of this book

Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection. The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with. By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform.
Table of Contents (19 chapters)
close
1
Section 1 – Getting Started with Machine Learning with Elastic Stack
4
Section 2 – Time Series Analysis – Anomaly Detection and Forecasting
11
Section 3 – Data Frame Analysis

Summary

To summarize what we discussed in this chapter, we covered the genesis story of ML in IT—born out of the necessity to automate analysis of the massive, ever-expanding growth of collected data within enterprise environments. We also got a more intuitive understanding of the different types of ML in Elastic ML, which includes both unsupervised anomaly detection and supervised data frame analysis.

As we journey through the rest of the chapters, we will often be mapping the use cases of the problems we're trying to solve to the different modes of operation of Elastic ML.

Remember that if the data is a time series, meaning that it comes into existence routinely over time (metric/performance data, log files, transactions, and so on), it is quite possible that Elastic ML's anomaly detection is all you'll ever need. As you'll see, it is incredibly flexible and easy to use and accomplishes many use cases on a broad variety of data. It's kind of a Swiss Army knife! A large amount of this book (Chapters 3 through 8) will be devoted to how to leverage anomaly detection (and the ancillary capability of forecasting) to get the most out of your time series data that is in the Elastic Stack.

If you are more interested in finding unusual entities within a population/cohort (User/Entity Behavior), you might have a tricky decision between using population analysis in anomaly detection versus outlier detection in data frame analytics. The primary factor may be whether or not you need to do this in near real time—in which case you might likely choose population analysis. If near real time is not necessary and/or if you require the consideration of multiple features simultaneously, you would choose outlier detection. See Chapter 10, for more detailed information about the comparison and benefits of each approach.

That leaves many other use cases that require a multivariate approach to modeling. This would not only align with the previous example of real estate pricing but also encompass the use cases of language detection, customer churn analysis, malware detection, and so on. These will fall squarely in the realm of the supervised ML of data frame analytics and be covered in Chapters 11 through 13.

In the next chapter, we will get down and dirty with understanding how to enable Elastic ML and how it works in an operational sense. Buckle up and enjoy the ride!

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete