Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with the Elastic Stack
  • Toc
  • feedback
Machine Learning with the Elastic Stack

Machine Learning with the Elastic Stack

By : Rich Collier, Camilla Montonen, Bahaaldine Azarmi
5 (9)
close
Machine Learning with the Elastic Stack

Machine Learning with the Elastic Stack

5 (9)
By: Rich Collier, Camilla Montonen, Bahaaldine Azarmi

Overview of this book

Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection. The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with. By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform.
Table of Contents (19 chapters)
close
1
Section 1 – Getting Started with Machine Learning with Elastic Stack
4
Section 2 – Time Series Analysis – Anomaly Detection and Forecasting
11
Section 3 – Data Frame Analysis

Hyperparameter tuning for outlier detection

For the more advanced user, the Data Frame Analytics wizard offers an opportunity to configure and tune hyperparameters – various knobs and dials that fine-tune how the outlier detection algorithm works. The available hyperparameters are displayed in Figure 10.17. For example, we can direct the outlier detection job to use only a certain type of outlier detection method instead of the ensemble, to use a certain value for the number of nearest neighbors that are used in the computation in the ensemble, and to assume that a certain portion of the data is outlying.

Please note that while it is good to play around with these settings to experiment and get a feel for how they affect the final results, if you want to customize any of these for a production usecase, you should carefully study the characteristics of your data and have an awareness of how these characteristics will interact with your chosen hyperparameter settings. More...

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete