Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning with LightGBM and Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning with LightGBM and Python

Machine Learning with LightGBM and Python

By : Andrich van Wyk
4.4 (8)
close
close
Machine Learning with LightGBM and Python

Machine Learning with LightGBM and Python

4.4 (8)
By: Andrich van Wyk

Overview of this book

Machine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release. This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions. Starting with simple machine learning models in scikit-learn, you’ll explore the intricacies of gradient boosting machines and LightGBM. You’ll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems. As you progress, you’ll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI. By the end of this book, you’ll be well equipped to use various -of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.
Table of Contents (17 chapters)
close
close
1
Part 1: Gradient Boosting and LightGBM Fundamentals
6
Part 2: Practical Machine Learning with LightGBM
10
Part 3: Production-ready Machine Learning with LightGBM

Summary

This chapter introduced ML pipelines, illustrating their advantages in enabling consistency, correctness, and portability when implementing ML solutions.

An overview was given on the nascent MLOps field, a practice combining DevOps and ML to realize tested, scalable, secure, and observable production ML systems.

Further, we discussed the scikit-learn Pipeline class, a toolset to implement ML pipelines using the familiar scikit-learn API.

A practical, end-to-end example of implementing an ML pipeline for customer churn was also given. We showed how to create a scikit-learn pipeline that performs preprocessing, modeling, and tuning and is exportable for a software system. We then built a secure RESTful web API using FastAPI that provides an endpoint for getting predictions from our customer churn pipeline. Finally, we deployed our API to Google Cloud Platform using the Cloud Run service.

Although our deployment is secure and fully scalable, with observability, metrics...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY