Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Neural Networks with Keras
  • Toc
  • feedback
Hands-On Neural Networks with Keras

Hands-On Neural Networks with Keras

By : Purkait
close
Hands-On Neural Networks with Keras

Hands-On Neural Networks with Keras

By: Purkait

Overview of this book

Neural networks are used to solve a wide range of problems in different areas of AI and deep learning. Hands-On Neural Networks with Keras will start with teaching you about the core concepts of neural networks. You will delve into combining different neural network models and work with real-world use cases, including computer vision, natural language understanding, synthetic data generation, and many more. Moving on, you will become well versed with convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, autoencoders, and generative adversarial networks (GANs) using real-world training datasets. We will examine how to use CNNs for image recognition, how to use reinforcement learning agents, and many more. We will dive into the specific architectures of various networks and then implement each of them in a hands-on manner using industry-grade frameworks. By the end of this book, you will be highly familiar with all prominent deep learning models and frameworks, and the options you have when applying deep learning to real-world scenarios and embedding artificial intelligence as the core fabric of your organization.
Table of Contents (16 chapters)
close
Free Chapter
1
Section 1: Fundamentals of Neural Networks
5
Section 2: Advanced Neural Network Architectures
10
Section 3: Hybrid Model Architecture
13
Section 4: Road Ahead

On modeling stock market data

Before moving forward, we must remind ourselves about the inherent stochasticity that lies embedded in market trends. Perhaps you are more of an efficient market hypothesis type of a person than an irrational market type. Whatever may be your personal convictions on the inner logic motivating stock movements, the reality of the matter is that there is a lot of randomness that often escapes even the most predictive of models. Investor behavior is hard to foresee, as investors tend to capitalize for various motives. Even general trends can be deceptive, as proven most recently by the Bitcoin asset bubble toward the end of 2017; many other examples exist (the 2008 global crisis, post-unrest inflation in Zimbabwe, the 1970s oil crisis, post-WWI Germany, the tulip mania during the Dutch golden age, and so forth, all the way back to antiquity).

In fact...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete