Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Neural Networks with Keras
  • Toc
  • feedback
Hands-On Neural Networks with Keras

Hands-On Neural Networks with Keras

By : Purkait
close
Hands-On Neural Networks with Keras

Hands-On Neural Networks with Keras

By: Purkait

Overview of this book

Neural networks are used to solve a wide range of problems in different areas of AI and deep learning. Hands-On Neural Networks with Keras will start with teaching you about the core concepts of neural networks. You will delve into combining different neural network models and work with real-world use cases, including computer vision, natural language understanding, synthetic data generation, and many more. Moving on, you will become well versed with convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, autoencoders, and generative adversarial networks (GANs) using real-world training datasets. We will examine how to use CNNs for image recognition, how to use reinforcement learning agents, and many more. We will dive into the specific architectures of various networks and then implement each of them in a hands-on manner using industry-grade frameworks. By the end of this book, you will be highly familiar with all prominent deep learning models and frameworks, and the options you have when applying deep learning to real-world scenarios and embedding artificial intelligence as the core fabric of your organization.
Table of Contents (16 chapters)
close
Free Chapter
1
Section 1: Fundamentals of Neural Networks
5
Section 2: Advanced Neural Network Architectures
10
Section 3: Hybrid Model Architecture
13
Section 4: Road Ahead

Visualizing class activations with Keras-vis

For this purpose, we use the visualize_cam function, which essentially generates a Grad-CAM that maximizes the layer activations for a given input, for a specified output class.

The visualize_cam function takes the same four arguments we saw earlier, plus an additional one. We pass it the arguments corresponding to a Keras model, a seed input image, a filter index corresponding to our output class (ImageNet index for leopard), as well as two model layers. One of these layers remains the fully connected dense output player, whereas the other layer refers to the final convolutional layer in the ResNet50 model. The method essentially leverages these two reference points to generate the gradient weighted class activation maps, as shown:

As we see, the network correctly identifies the leopards in both images. Moreover, we notice that the...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete