Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • TensorFlow Reinforcement Learning Quick Start Guide
  • Toc
  • feedback
TensorFlow Reinforcement Learning Quick Start Guide

TensorFlow Reinforcement Learning Quick Start Guide

By : Balakrishnan
5 (2)
close
TensorFlow Reinforcement Learning Quick Start Guide

TensorFlow Reinforcement Learning Quick Start Guide

5 (2)
By: Balakrishnan

Overview of this book

Advances in reinforcement learning algorithms have made it possible to use them for optimal control in several different industrial applications. With this book, you will apply Reinforcement Learning to a range of problems, from computer games to autonomous driving. The book starts by introducing you to essential Reinforcement Learning concepts such as agents, environments, rewards, and advantage functions. You will also master the distinctions between on-policy and off-policy algorithms, as well as model-free and model-based algorithms. You will also learn about several Reinforcement Learning algorithms, such as SARSA, Deep Q-Networks (DQN), Deep Deterministic Policy Gradients (DDPG), Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). The book will also show you how to code these algorithms in TensorFlow and Python and apply them to solve computer games from OpenAI Gym. Finally, you will also learn how to train a car to drive autonomously in the Torcs racing car simulator. By the end of the book, you will be able to design, build, train, and evaluate feed-forward neural networks and convolutional neural networks. You will also have mastered coding state-of-the-art algorithms and also training agents for various control problems.
Table of Contents (11 chapters)
close

Deep Q-Network

Deep Q-Networks (DQNs) revolutionized the field of reinforcement learning (RL). I am sure you have heard of Google DeepMind, which used to be a British company called DeepMind Technologies until Google acquired it in 2014. DeepMind published a paper in 2013 titled Playing Atari with Deep RL, where they used Deep Neural Networks (DNNs) in the context of RL, or DQNs as they are referred to – which is an idea that is seminal to the field. This paper revolutionized the field of deep RL, and the rest is history! Later, in 2015, they published a second paper, titled Human Level Control Through Deep RL, in Nature, where they had more interesting ideas that further improved the former paper. Together, the two papers led to a Cambrian explosion in the field of deep RL, with several new algorithms that have improved the training of agents using neural networks, and...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete