Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • TensorFlow Reinforcement Learning Quick Start Guide
  • Toc
  • feedback
TensorFlow Reinforcement Learning Quick Start Guide

TensorFlow Reinforcement Learning Quick Start Guide

By : Balakrishnan
5 (2)
close
TensorFlow Reinforcement Learning Quick Start Guide

TensorFlow Reinforcement Learning Quick Start Guide

5 (2)
By: Balakrishnan

Overview of this book

Advances in reinforcement learning algorithms have made it possible to use them for optimal control in several different industrial applications. With this book, you will apply Reinforcement Learning to a range of problems, from computer games to autonomous driving. The book starts by introducing you to essential Reinforcement Learning concepts such as agents, environments, rewards, and advantage functions. You will also master the distinctions between on-policy and off-policy algorithms, as well as model-free and model-based algorithms. You will also learn about several Reinforcement Learning algorithms, such as SARSA, Deep Q-Networks (DQN), Deep Deterministic Policy Gradients (DDPG), Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). The book will also show you how to code these algorithms in TensorFlow and Python and apply them to solve computer games from OpenAI Gym. Finally, you will also learn how to train a car to drive autonomously in the Torcs racing car simulator. By the end of the book, you will be able to design, build, train, and evaluate feed-forward neural networks and convolutional neural networks. You will also have mastered coding state-of-the-art algorithms and also training agents for various control problems.
Table of Contents (11 chapters)
close

Model-free and model-based training

RL algorithms that do not learn a model of how the environment works are called model-free algorithms. By contrast, if a model of the environment is constructed, then the algorithm is called model-based. In general, if value (V) or action-value (Q) functions are used to evaluate the performance, they are called model-free algorithms as no specific model of the environment is used. On the other hand, if you build a model of how the environment transitions from one state to another or determines how many rewards the agent will receive from the environment via a model, then they are called model-based algorithms.

In model-free algorithms, as aforementioned, we do not construct a model of the environment. Thus, the agent has to take an action at a state to figure out if it is a good or a bad choice. In model-based RL, an approximate model of the environment is learned; either jointly learned along with the policy, or learned a priori. This model of the environment is used to make decisions, as well as to train the policy. We will learn more about both classes of RL algorithms in later chapters.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete