Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Intelligent Agents with OpenAI Gym
  • Toc
  • feedback
Hands-On Intelligent Agents with OpenAI Gym

Hands-On Intelligent Agents with OpenAI Gym

By : Palanisamy
2 (3)
close
Hands-On Intelligent Agents with OpenAI Gym

Hands-On Intelligent Agents with OpenAI Gym

2 (3)
By: Palanisamy

Overview of this book

Many real-world problems can be broken down into tasks that require a series of decisions to be made or actions to be taken. The ability to solve such tasks without a machine being programmed requires a machine to be artificially intelligent and capable of learning to adapt. This book is an easy-to-follow guide to implementing learning algorithms for machine software agents in order to solve discrete or continuous sequential decision making and control tasks. Hands-On Intelligent Agents with OpenAI Gym takes you through the process of building intelligent agent algorithms using deep reinforcement learning starting from the implementation of the building blocks for configuring, training, logging, visualizing, testing, and monitoring the agent. You will walk through the process of building intelligent agents from scratch to perform a variety of tasks. In the closing chapters, the book provides an overview of the latest learning environments and learning algorithms, along with pointers to more resources that will help you take your deep reinforcement learning skills to the next level.
Table of Contents (12 chapters)
close

Other open source Python-based learning environments

In this section, we will discuss recent Python-based learning environments that provide a good platform for intelligent agent development but don't necessarily have a Gym-compatible environment interface. Although they do not provide Gym-compatible interfaces, the environments we will be discussing in this section were carefully selected to make sure that either a Gym wrapper (to make it compatible with the Gym interface) is available, or they are easy to implement in order to use and experiment with the agents we have developed through this book. As you can guess, this list of good Python-based learning environments for developing intelligent agents will grow in the future, as this area is being very actively researched at the moment. The book's code repository will have information and quickstart guides for new environments...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete