Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Time Series Analysis with R
  • Toc
  • feedback
Hands-On Time Series Analysis with R

Hands-On Time Series Analysis with R

By : Rami Krispin
3.8 (11)
close
Hands-On Time Series Analysis with R

Hands-On Time Series Analysis with R

3.8 (11)
By: Rami Krispin

Overview of this book

Time-series analysis is the art of extracting meaningful insights from, and revealing patterns in, time-series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series. This book explores the basics of time-series analysis with R and lays the foundation you need to build forecasting models. You will learn how to preprocess raw time-series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data using both descriptive statistics and rich data visualization tools in R including the TSstudio, plotly, and ggplot2 packages. The book then delves into traditional forecasting models such as time-series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also work on advanced time-series regression models with machine learning algorithms such as random forest and Gradient Boosting Machine using the h2o package. By the end of this book, you will have developed the skills necessary for exploring your data, identifying patterns, and building a forecasting model using various traditional and machine learning methods.
Table of Contents (14 chapters)
close

The forecasting workflow

Traditional time series forecasting follows the same workflow as most of the fields of predictive analysis, such as regression or classification, and typically includes the following steps:

  1. Data preparation: Here, we prepare the data for the training and testing process of the model. This step includes splitting the series into training (in-sample) and testing (out-sample) partitions, creating new features (when applicable), and applying a transformation if needed (for example, log transformation, scaling, and so on).
  2. Train the model: Here, we used the training partition to train a statistical model. The main goal of this step is to utilize the training set to train, tune, and estimate the model coefficients that minimize the selected error criteria (later on in this chapter, we will discuss common error metrics in detail). The fitted values and the model...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete