Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Time Series Analysis with R
  • Toc
  • feedback
Hands-On Time Series Analysis with R

Hands-On Time Series Analysis with R

By : Rami Krispin
3.8 (11)
close
Hands-On Time Series Analysis with R

Hands-On Time Series Analysis with R

3.8 (11)
By: Rami Krispin

Overview of this book

Time-series analysis is the art of extracting meaningful insights from, and revealing patterns in, time-series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series. This book explores the basics of time-series analysis with R and lays the foundation you need to build forecasting models. You will learn how to preprocess raw time-series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data using both descriptive statistics and rich data visualization tools in R including the TSstudio, plotly, and ggplot2 packages. The book then delves into traditional forecasting models such as time-series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also work on advanced time-series regression models with machine learning algorithms such as random forest and Gradient Boosting Machine using the h2o package. By the end of this book, you will have developed the skills necessary for exploring your data, identifying patterns, and building a forecasting model using various traditional and machine learning methods.
Table of Contents (14 chapters)
close

The ARMA model

Up until now, we have seen how the applications of AR and MA are processed separately. However, in some cases, combining the two allows us to handle more complex time series data. The ARMA model is a combination of the AR(p) and MA(q) processes and can be written as follows:

The following terms are used in the preceding equation:

  • ARMA(p,q) defines an ARMA process with a p-order AR process and q-order moving average process
  • Yt represents the series itself
  • c represents a constant (or drift)
  • p defines the number of lags to regress against Yt
  • is the coefficient of the i lag of the series
  • Yt-1 is the i lag of the series
  • q defines the number of past error terms to be used in the equation
  • is the corresponding coefficient of
  • are white noise error terms
  • represents the error term, which is white noise

For instance, an ARMA(3,2) model is defined by the following equation...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete