Date and time objects are one of the foundations of the time series data. Thus, the ability to import, reformat, and convert this type of object in R seamlessly is an essential part of the time series analysis process. In this chapter, we introduced the primary date and time objects in R, the Date and POSIXct/POSIXlt classes, and their main attributes. Furthermore, we introduced two main approaches in R to handle and process those objects, with the base and lubridate packages. While the work with the base functions is more technical (or hardcore coding), the work with the lubridate package is based on common English language communication with the objects and therefore is much simpler to use. I personally found that deep understanding of the base package approach makes working with the lubridate package much smoother and more straightforward, as date and time objects play...

Hands-On Time Series Analysis with R
By :

Hands-On Time Series Analysis with R
By:
Overview of this book
Time-series analysis is the art of extracting meaningful insights from, and revealing patterns in, time-series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series.
This book explores the basics of time-series analysis with R and lays the foundation you need to build forecasting models. You will learn how to preprocess raw time-series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data using both descriptive statistics and rich data visualization tools in R including the TSstudio, plotly, and ggplot2 packages. The book then delves into traditional forecasting models such as time-series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also work on advanced time-series regression models with machine learning algorithms such as random forest and Gradient Boosting Machine using the h2o package.
By the end of this book, you will have developed the skills necessary for exploring your data, identifying patterns, and building a forecasting model using various traditional and machine learning methods.
Table of Contents (14 chapters)
Preface
Introduction to Time Series Analysis and R
Working with Date and Time Objects
The Time Series Object
Working with zoo and xts Objects
Decomposition of Time Series Data
Seasonality Analysis
Correlation Analysis
Forecasting Strategies
Forecasting with Linear Regression
Forecasting with Exponential Smoothing Models
Forecasting with ARIMA Models
Forecasting with Machine Learning Models
Other Books You May Enjoy
How would like to rate this book
Customer Reviews