Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Time Series Analysis with R
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Time Series Analysis with R

Hands-On Time Series Analysis with R

By : Rami Krispin
3.8 (11)
close
close
Hands-On Time Series Analysis with R

Hands-On Time Series Analysis with R

3.8 (11)
By: Rami Krispin

Overview of this book

Time-series analysis is the art of extracting meaningful insights from, and revealing patterns in, time-series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series. This book explores the basics of time-series analysis with R and lays the foundation you need to build forecasting models. You will learn how to preprocess raw time-series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data using both descriptive statistics and rich data visualization tools in R including the TSstudio, plotly, and ggplot2 packages. The book then delves into traditional forecasting models such as time-series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also work on advanced time-series regression models with machine learning algorithms such as random forest and Gradient Boosting Machine using the h2o package. By the end of this book, you will have developed the skills necessary for exploring your data, identifying patterns, and building a forecasting model using various traditional and machine learning methods.
Table of Contents (14 chapters)
close
close

Creating a date or time index

So far, our focus in this chapter was mainly on the attributes of the date and time classes. Let's now connect the dots and see some useful applications of time series data. As introduced in Chapter 1, Introduction to Time Series Analysis and R, the main characteristic of time series data is its time index (or timestamp), an equally spaced time interval. The base package provides two pairs of functions, seq.Date and seq.POSIXt, to create a time index vector with Date or POSIX objects respectively. The main difference between the two functions (besides the class of the output) is the units of the time interval. It will make sense to use the seq.Date function to generate a time sequence with daily frequency or lower (for example, weekly, monthly, and so on) and as.POSIXt in other instances (for higher frequencies than daily, such as hourly, half...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY