Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Ensemble Learning with R
  • Toc
  • feedback
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

By : Tattar
3 (1)
close
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

3 (1)
By: Tattar

Overview of this book

Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy. Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models. By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.
Table of Contents (15 chapters)
close
12
12. What's Next?
13
A. Bibliography
14
Index

The general boosting algorithm

The tree-based ensembles in the previous chapters, Bagging and Random Forests, cover an important extension of the decision trees. However, while bagging provides greater stability by averaging multiple decision trees, the bias persists. This limitation motivated Breiman to sample the covariates at each split point to generate an ensemble of "independent" trees and lay the foundation for random forests. The trees in the random forests can be developed in parallel, as is the case with bagging. The idea of averaging over multiple trees is to ensure the balance between the bias and variance trade-off. Boosting is the third most important extension of the decision trees, and probably the most effective one. It is again based on ensembling homogeneous base learners (in this case, trees), as are the bagging and random forests. The design of the boosting algorithm is completely different though. It is a sequential ensemble method in that the residual/misclassified...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete