Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Ensemble Learning with R
  • Toc
  • feedback
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

By : Tattar
3 (1)
close
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

3 (1)
By: Tattar

Overview of this book

Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy. Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models. By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.
Table of Contents (15 chapters)
close
12
12. What's Next?
13
A. Bibliography
14
Index

Regression models – parametric and Cox proportional hazards models

You may recall that the survival data consists of complete as well as censored observations, and we saw that the lifetimes look like 400, 4500+, 1012, 1925, 1504+, … for the pbc dataset. Although the lifetimes are continuous random variables, a regression model of the form Regression models – parametric and Cox proportional hazards models will not be appropriate here. In fact, there were many attempts to correct and improvise on models of this form in the 1970s, and most often the results were detrimental. We will define a generic hazards regression model as follows:

Regression models – parametric and Cox proportional hazards models

Here, t is the lifetime, Regression models – parametric and Cox proportional hazards models is the lifetime indicator, Regression models – parametric and Cox proportional hazards models is the covariate vector, Regression models – parametric and Cox proportional hazards models is the vector of regression coefficients, and Regression models – parametric and Cox proportional hazards models is the baseline hazard rate. A relative risks model that is of specific interest is the following:

Regression models – parametric and Cox proportional hazards models

We will focus solely on this class of model. First, the parametric hazards regression is considered. This means that we will specify the hazard rate Regression models – parametric and Cox proportional hazards models through a parametric model, for example...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete