Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Ensemble Learning with R
  • Toc
  • feedback
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

By : Tattar
3 (1)
close
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

3 (1)
By: Tattar

Overview of this book

Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy. Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models. By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.
Table of Contents (15 chapters)
close
12
12. What's Next?
13
A. Bibliography
14
Index

Bootstrap – a statistical method

In this section, we will explore complex statistical functional. What is the statistical distribution of the correlation between two random variables? If normality assumption does not hold for the multivariate data, then what is an alternative way to obtain the standard error and confidence interval? Efron (1979) invented the bootstrap technique, which provides the solutions that enable statistical inference related to complex statistical functionals. In Chapter 1, Introduction to Ensemble Techniques, the permutation test, which repeatedly draws samples of the given sample and carries out the test for each of the resamples, was introduced. In theory, the permutation test requires Bootstrap – a statistical method number of resamples, where m and n are the number of observations in the two samples, though one does take their foot off the pedal after having enough resamples. The bootstrap method works in a similar way and is an important resampling method.

Let Bootstrap – a statistical method be an independent random...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete