Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Ensemble Learning with R
  • Toc
  • feedback
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

By : Tattar
3 (1)
close
Hands-On Ensemble Learning with R

Hands-On Ensemble Learning with R

3 (1)
By: Tattar

Overview of this book

Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy. Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models. By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.
Table of Contents (15 chapters)
close
12
12. What's Next?
13
A. Bibliography
14
Index

Summary

Time series data poses new challenges and complexities. The chapter began with an introduction to important and popular datasets. We looked at different time series and their intricacies. Visualization of time series provides great insight, and the time series plots, along with the seasonal plot, are complementarily used for clear ideas and niche implementations. Accuracy metrics are different for the time series, and we looked at more than a handful of these. The concepts of ACF and PACF are vital in model identification, and seasonal components are also important to the modeling of time series. We also saw that different models express different datasets, and the degree of variation is something similar to the usual regression problems. The bagging of time series (ets only) reduces the variance of the forecasts. Combining heterogeneous base learners was discussed in the concluding section. The next chapter is the concluding chapter. We will summarize the main takeaways from the...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete