Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning Algorithms
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

3.4 (5)
close
close
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

3.4 (5)

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (17 chapters)
close
close
13
Deep Belief Networks

Hidden Markov Models (HMMs)

Let's consider a stochastic process X(t) that can assume N different states: s1, s2, ..., sN with first-order Markov chain dynamics. Let's also suppose that we cannot observe the state of X(t), but we have access to another process O(t), connected to X(t), which produces observable outputs (often known as emissions). The resulting process is called a Hidden Markov Model (HMM), and a generic schema is shown in the following diagram:

Structure of a generic Hidden Markov Model

For each hidden state si, we need to define a transition probability P(i → j), normally represented as a matrix if the variable is discrete. For the Markov assumption, we have:

Moreover, given a sequence of observations o1, o2, ..., oM, we also assume the following assumption about the independence of the emission probability:

In other words, the probability...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY