Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering Machine Learning Algorithms
  • Toc
  • feedback
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

3.4 (5)
close
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

3.4 (5)

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (17 chapters)
close
13
Deep Belief Networks

Reinforcement Learning fundamentals

Imagine that you want to learn to ride a bike and ask a friend for advice. They explain how the gears work, how to release the brake and a few other technical details. In the end, you ask the secret to keeping balanced. What kind of answer do you expect? In an imaginary supervised world, you should be able to perfectly quantify your actions and correct the errors by comparing the outcomes with precise reference values. In the real world, you have no idea about the quantities underlying your actions and, above all, you will never know what the right value is. Increasing the level of abstraction, the scenario we're considering can be described as: a generic agent performs actions inside an environment and receives feedback that is somehow proportional to the competence of its actions.

According to this feedback, the agent can correct...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete