Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning Algorithms
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

3.4 (5)
close
close
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

3.4 (5)

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (17 chapters)
close
close
13
Deep Belief Networks

Variational autoencoders


A variational autoencoder (VAE) is a generative model proposed by Kingma and Wellin (in their work Auto-Encoding Variational Bayes, arXiv:1312.6114 [stat.ML]) that partially resembles a standard autoencoder, but it has some fundamental internal differences. The goal, in fact, is not finding an encoded representation of a dataset, but determining the parameters of a generative process that is able to yield all possible outputs given an input data-generating process.

Let's take the example of a model based on a learnable parameter vector θ and a set of latent variables z that have a probability density function p(z;θ). Our goal can therefore be expressed as the research of the θparametersthat maximize the likelihood of the marginalized distribution p(x;θ) (obtained through the integration of the joint probability p(x,z;θ)):

If this problem could be easily solved in closed form, a large set of samples drawn from the p(x)data generating processwould be enough to find a...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY