Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Numpy Beginner's Guide (Update)
  • Toc
  • feedback
Numpy Beginner's Guide (Update)

Numpy Beginner's Guide (Update)

By : Ivan Idris
2 (1)
close
Numpy Beginner's Guide (Update)

Numpy Beginner's Guide (Update)

2 (1)
By: Ivan Idris

Overview of this book

This book is for the scientists, engineers, programmers, or analysts looking for a high-quality, open source mathematical library. Knowledge of Python is assumed. Also, some affinity, or at least interest, in mathematics and statistics is required. However, I have provided brief explanations and pointers to learning resources.
Table of Contents (16 chapters)
close
14
C. NumPy Functions' References
15
Index

Solving linear systems

A matrix transforms a vector into another vector in a linear way. This transformation mathematically corresponds to a system of linear equations. The numpy.linalg function solve() solves systems of linear equations of the form Ax = b, where A is a matrix, b can be a one-dimensional or two-dimensional array, and x is an unknown variable. We will see the dot() function in action. This function returns the dot product of two floating-point arrays.

The dot() function calculates the dot product (see https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/dot_cross_products/v/vector-dot-product-and-vector-length). For a matrix A and vector b, the dot product is equal to the following sum:

Solving linear systems
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete