Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Numpy Beginner's Guide (Update)
  • Toc
  • feedback
Numpy Beginner's Guide (Update)

Numpy Beginner's Guide (Update)

By : Ivan Idris
2 (1)
close
Numpy Beginner's Guide (Update)

Numpy Beginner's Guide (Update)

2 (1)
By: Ivan Idris

Overview of this book

This book is for the scientists, engineers, programmers, or analysts looking for a high-quality, open source mathematical library. Knowledge of Python is assumed. Also, some affinity, or at least interest, in mathematics and statistics is required. However, I have provided brief explanations and pointers to learning resources.
Table of Contents (16 chapters)
close
14
C. NumPy Functions' References
15
Index

Fourier analysis

Signals in the real world often have a periodic nature. A commonly used tool to deal with these signals is the Discrete Fourier transform (see https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform). The Discrete Fourier transform is a transformation from the time domain into the frequency domain, that is, the linear decomposition of a periodic signal into sine and cosine functions with various frequencies:

Fourier analysis

Functions for Fourier transforms can be found in the scipy.fftpack module (NumPy also has its own Fourier package numpy.fft). Included in the package are Fast Fourier transforms, differential and pseudo-differential operators, as well as several helper functions. MATLAB users will be pleased to know that a number of functions in the scipy.fftpack module have the same name as their MATLAB counterparts, and a similar function as their MATLAB equivalents.

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete