Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Numpy Beginner's Guide (Update)
  • Toc
  • feedback
Numpy Beginner's Guide (Update)

Numpy Beginner's Guide (Update)

By : Ivan Idris
2 (1)
close
Numpy Beginner's Guide (Update)

Numpy Beginner's Guide (Update)

2 (1)
By: Ivan Idris

Overview of this book

This book is for the scientists, engineers, programmers, or analysts looking for a high-quality, open source mathematical library. Knowledge of Python is assumed. Also, some affinity, or at least interest, in mathematics and statistics is required. However, I have provided brief explanations and pointers to learning resources.
Table of Contents (16 chapters)
close
14
C. NumPy Functions' References
15
Index

NumPy array object

NumPy has a multidimensional array object called ndarray. It consists of two parts:

  • The actual data
  • Some metadata describing the data

The majority of array operations leave the raw data untouched. The only aspect that changes is the metadata.

In the previous chapter, we have already learned how to create an array using the arange() function. Actually, we created a one-dimensional array that contained a set of numbers. The ndarray object can have more than one dimension.

The NumPy array is in general homogeneous (there is a special array type that is heterogeneous as described in the Time for action – creating a record data type section)—the items in the array have to be of the same type. The advantage is that, if we know that the items in the array are of the same type, it is easy to determine the storage size required for the array.

NumPy arrays are indexed starting from 0, just like in Python. Data types are represented by special objects. We will discuss these...

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete