Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learning Data Mining with Python
  • Toc
  • feedback
Learning Data Mining with Python

Learning Data Mining with Python

By : Robert Layton
3.7 (7)
close
Learning Data Mining with Python

Learning Data Mining with Python

3.7 (7)
By: Robert Layton

Overview of this book

If you are a programmer who wants to get started with data mining, then this book is for you.
Table of Contents (15 chapters)
close
14
Index

Feature selection


We will often have a large number of features to choose from, but we wish to select only a small subset. There are many possible reasons for this:

  • Reducing complexity: Many data mining algorithms need more time and resources with increase in the number of features. Reducing the number of features is a great way to make an algorithm run faster or with fewer resources.

  • Reducing noise: Adding extra features doesn't always lead to better performance. Extra features may confuse the algorithm, finding correlations and patterns that don’t have meaning (this is common in smaller datasets). Choosing only the appropriate features is a good way to reduce the chance of random correlations that have no real meaning.

  • Creating readable models: While many data mining algorithms will happily compute an answer for models with thousands of features, the results may be difficult to interpret for a human. In these cases, it may be worth using fewer features and creating a model that a human...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete