Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learning Data Mining with Python
  • Toc
  • feedback
Learning Data Mining with Python

Learning Data Mining with Python

By : Robert Layton
3.7 (7)
close
Learning Data Mining with Python

Learning Data Mining with Python

3.7 (7)
By: Robert Layton

Overview of this book

If you are a programmer who wants to get started with data mining, then this book is for you.
Table of Contents (15 chapters)
close
14
Index

Summary

In this chapter, we used several of scikit-learn's methods for building a standard workflow to run and evaluate data mining models. We introduced the Nearest Neighbors algorithm, which is already implemented in scikit-learn as an estimator. Using this class is quite easy; first, we call the fit function on our training data, and second, we use the predict function to predict the class of testing samples.

We then looked at preprocessing by fixing poor feature scaling. This was done using a Transformer object and the MinMaxScaler class. These functions also have a fit method and then a transform, which takes a dataset as an input and returns a transformed dataset as an output.

In the next chapter, we will use these concepts in a larger example, predicting the outcome of sports matches using real-world data.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete