Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Linux Kernel Programming
  • Toc
  • feedback
Linux Kernel Programming

Linux Kernel Programming

By : Kaiwan N. Billimoria
4.9 (35)
close
Linux Kernel Programming

Linux Kernel Programming

4.9 (35)
By: Kaiwan N. Billimoria

Overview of this book

The 2nd Edition of Linux Kernel Programming is an updated, comprehensive guide for new programmers to the Linux kernel. This book uses the recent 6.1 Long-Term Support (LTS) Linux kernel series, which will be maintained until Dec 2026, and also delves into its many new features. Further, the Civil Infrastructure Project has pledged to maintain and support this 6.1 Super LTS (SLTS) kernel right until August 2033, keeping this book valid for years to come! You’ll begin this exciting journey by learning how to build the kernel from source. In a step by step manner, you will then learn how to write your first kernel module by leveraging the kernel’s powerful Loadable Kernel Module (LKM) framework. With this foundation, you will delve into key kernel internals topics including Linux kernel architecture, memory management, and CPU (task) scheduling. You’ll finish with understanding the deep issues of concurrency, and gain insight into how they can be addressed with various synchronization/locking technologies (e.g., mutexes, spinlocks, atomic/refcount operators, rw-spinlocks and even lock-free technologies such as per-CPU and RCU). By the end of this book, you’ll have a much better understanding of the fundamentals of writing the Linux kernel and kernel module code that can straight away be used in real-world projects and products.
Table of Contents (16 chapters)
close
14
Other Books You May Enjoy
15
Index

Using the mutex lock

Mutexes are also called sleepable or blocking mutual exclusion (mutex) locks. As you have learned, they are used in process context if the critical section can sleep (block). They must not be used within any kind of atomic or interrupt context (top halves, bottom halves such as tasklets or softirqs, and so on), kernel timers, or in process context where blocking is not allowed.

Initializing the mutex lock

Prior to usage, every lock must be initialized to the “unlocked” state. A mutex lock “object” is represented in the kernel as a struct mutex data structure. Consider the following code:

#include <linux/mutex.h>
struct mutex mymtx;

To use this mutex lock, it must be explicitly initialized to the unlocked state. Initialization can be performed statically (declare and initialize the object) with the DEFINE_MUTEX() macro, or dynamically via the mutex_init() function (this is actually a macro wrapper over the __mutex_init...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete