Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Data Cleaning and Exploration with Machine Learning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Data Cleaning and Exploration with Machine Learning

Data Cleaning and Exploration with Machine Learning

By : Michael Walker
4.3 (9)
close
close
Data Cleaning and Exploration with Machine Learning

Data Cleaning and Exploration with Machine Learning

4.3 (9)
By: Michael Walker

Overview of this book

Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results. As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You’ll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you’ll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You’ll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book. By the end of this book, you’ll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering.
Table of Contents (23 chapters)
close
close
1
Section 1 – Data Cleaning and Machine Learning Algorithms
5
Section 2 – Preprocessing, Feature Selection, and Sampling
9
Section 3 – Modeling Continuous Targets with Supervised Learning
13
Section 4 – Modeling Dichotomous and Multiclass Targets with Supervised Learning
19
Section 5 – Clustering and Dimensionality Reduction with Unsupervised Learning

Chapter 1: Examining the Distribution of Features and Targets

Machine learning writing and instruction are often algorithm-focused. Sometimes, this gives the impression that all we have to do is choose the right model and that organization-changing insights will follow. But the best place to begin a machine learning project is with an understanding of how the features and targets we will use are distributed.

It is important to make room for the same kind of learning from data that has been central to our work as analysts for decades – studying the distribution of variables, identifying anomalies, and examining bivariate relationships – even as we focus more and more on the accuracy of our predictions.

We will explore tools for doing so in the first three chapters of this book, while also considering implications for model building.

In this chapter, we will use common NumPy and pandas techniques to get a better sense of the attributes of our data. We want to know how key features are distributed before we do any predictive analyses. We also want to know the central tendency, shape, and spread of the distribution of each continuous feature and have a count for each value for categorical features. We will take advantage of very handy NumPy and pandas tools for generating summary statistics, such as the mean, min, and max, as well as standard deviation.

After that, we will create visualizations of key features, including histograms and boxplots, to give us a better sense of the distribution of each feature than we can get by just looking at summary statistics. We will hint at the implications of feature distribution for data transformation, encoding and scaling, and the modeling that we will be doing in subsequent chapters with the same data.

Specifically, in this chapter, we are going to cover the following topics:

  • Subsetting data
  • Generating frequencies for categorical features
  • Generating summary statistics for continuous features
  • Identifying extreme values and outliers in univariate analysis
  • Using histograms, boxplots, and violin plots to examine the distribution of continuous features

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY