Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Data Cleaning and Exploration with Machine Learning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Data Cleaning and Exploration with Machine Learning

Data Cleaning and Exploration with Machine Learning

By : Michael Walker
4.3 (9)
close
close
Data Cleaning and Exploration with Machine Learning

Data Cleaning and Exploration with Machine Learning

4.3 (9)
By: Michael Walker

Overview of this book

Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results. As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You’ll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you’ll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You’ll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book. By the end of this book, you’ll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering.
Table of Contents (23 chapters)
close
close
1
Section 1 – Data Cleaning and Machine Learning Algorithms
5
Section 2 – Preprocessing, Feature Selection, and Sampling
9
Section 3 – Modeling Continuous Targets with Supervised Learning
13
Section 4 – Modeling Dichotomous and Multiclass Targets with Supervised Learning
19
Section 5 – Clustering and Dimensionality Reduction with Unsupervised Learning

Chapter 9: K-Nearest Neighbors, Decision Tree, Random Forest, and Gradient Boosted Regression

As is true for support vector machines, K-nearest neighbors and decision tree models are best known as classification models. However, they can also be used for regression and present some advantages over classical linear regression. K-nearest neighbors and decision trees can handle nonlinearity well and no assumptions regarding the Gaussian distribution of features need to be made. Moreover, by adjusting our value of k for K-nearest neighbors (KNN) or maximal depth for decision trees, we can avoid fitting the training data too precisely.

This brings us back to a theme from the previous two chapters – how to increase model complexity, including accounting for nonlinearity, without overfitting. We have seen how allowing some bias can reduce variance and give us more reliable estimates of model performance. We will continue to explore that balance in this chapter.

Specifically,...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY