Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Bioinformatics with Python Cookbook
  • Toc
  • feedback
Bioinformatics with Python Cookbook

Bioinformatics with Python Cookbook

By : Tiago Antao
3.5 (4)
close
Bioinformatics with Python Cookbook

Bioinformatics with Python Cookbook

3.5 (4)
By: Tiago Antao

Overview of this book

Bioinformatics is an active research field that uses a range of simple-to-advanced computations to extract valuable information from biological data. This book covers next-generation sequencing, genomics, metagenomics, population genetics, phylogenetics, and proteomics. You'll learn modern programming techniques to analyze large amounts of biological data. With the help of real-world examples, you'll convert, analyze, and visualize datasets using various Python tools and libraries. This book will help you get a better understanding of working with a Galaxy server, which is the most widely used bioinformatics web-based pipeline system. This updated edition also includes advanced next-generation sequencing filtering techniques. You'll also explore topics such as SNP discovery using statistical approaches under high-performance computing frameworks such as Dask and Spark. By the end of this book, you'll be able to use and implement modern programming techniques and frameworks to deal with the ever-increasing deluge of bioinformatics data.
Table of Contents (12 chapters)
close

Introduction


In this chapter, we will discuss high-performance computing techniques for large computational biology datasets. We will talk about efficient data storage, code parallelization, running software in clusters, and code optimization. We will try to avoid any solution to a specific proprietary technology (for example, Amazon EC2) and will instead design code that will be applicable in a wide range of scenarios.

The previous edition of this book had some recipes that compared lazy and eager data structures. This made sense, as Python 2 was mostly eager and Python 3 is mostly lazy. As Python 2 is behind us, that content has been dropped. That being said, make sure that you understand the difference and that your code is mostly lazy. Be sure to check generators in Python. Use them.

As the sizes of the datasets is constantly increasing, in this edition, we cannot evade discussing the efficient storage of bioinformatics data, and so we will discuss the Hierarchical Data Format (HDF5) and...

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete