Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Bioinformatics with Python Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Bioinformatics with Python Cookbook

Bioinformatics with Python Cookbook

By : Tiago Antao
3.5 (4)
close
close
Bioinformatics with Python Cookbook

Bioinformatics with Python Cookbook

3.5 (4)
By: Tiago Antao

Overview of this book

Bioinformatics is an active research field that uses a range of simple-to-advanced computations to extract valuable information from biological data. This book covers next-generation sequencing, genomics, metagenomics, population genetics, phylogenetics, and proteomics. You'll learn modern programming techniques to analyze large amounts of biological data. With the help of real-world examples, you'll convert, analyze, and visualize datasets using various Python tools and libraries. This book will help you get a better understanding of working with a Galaxy server, which is the most widely used bioinformatics web-based pipeline system. This updated edition also includes advanced next-generation sequencing filtering techniques. You'll also explore topics such as SNP discovery using statistical approaches under high-performance computing frameworks such as Dask and Spark. By the end of this book, you'll be able to use and implement modern programming techniques and frameworks to deal with the ever-increasing deluge of bioinformatics data.
Table of Contents (12 chapters)
close
close

Studying genome accessibility and filtering SNP data

While the previous recipes were focused on giving an overview of Python libraries to deal with alignment and variant call data, in this recipe, we will concentrate on actually using them with a clear purpose in mind.

If you are using NGS data, chances are that your most important file to analyze is a VCF file, which is produced by a genotype caller such as SAMtools, mpileup, or GATK. The quality of your VCF calls may need to be assessed and filtered. Here, we will put in place a framework to filter SNP data. Rather than giving you filtering rules (an impossible task to be performed in a general way), we will give you procedures to assess the quality of your data. With this, you can devise your own filters. Be sure to check Chapter 11, Advanced NGS Processing for more tips on filtering.

...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY