Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Bioinformatics with Python Cookbook
  • Toc
  • feedback
Bioinformatics with Python Cookbook

Bioinformatics with Python Cookbook

By : Tiago Antao
3.5 (4)
close
Bioinformatics with Python Cookbook

Bioinformatics with Python Cookbook

3.5 (4)
By: Tiago Antao

Overview of this book

Bioinformatics is an active research field that uses a range of simple-to-advanced computations to extract valuable information from biological data. This book covers next-generation sequencing, genomics, metagenomics, population genetics, phylogenetics, and proteomics. You'll learn modern programming techniques to analyze large amounts of biological data. With the help of real-world examples, you'll convert, analyze, and visualize datasets using various Python tools and libraries. This book will help you get a better understanding of working with a Galaxy server, which is the most widely used bioinformatics web-based pipeline system. This updated edition also includes advanced next-generation sequencing filtering techniques. You'll also explore topics such as SNP discovery using statistical approaches under high-performance computing frameworks such as Dask and Spark. By the end of this book, you'll be able to use and implement modern programming techniques and frameworks to deal with the ever-increasing deluge of bioinformatics data.
Table of Contents (12 chapters)
close

Introduction

In Chapter 4, Population Genetics, we used Python to analyze population genetics datasets based on real data. In this chapter, we will look at how we can use Python to simulate population genetics data. From teaching, to developing new statistical methods, to analyzing the performance of existing methods, simulated datasets have plenty of applications.

There are two kinds of simulation: one is the coalescent, going backward in time, while the second is forward-time simulation. Coalescent simulation is computationally less expensive because only the most recent generation of individuals needs to be completely rendered; previous generations only need parents of the next generation to be maintained. On the other hand, this severely limits what can be simulated because we need to complete populations to make decisions on, for example, which individuals mate. Forward-time...

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete