This recipe will cover the preparation steps that you must consider before you install the DPM server.

Microsoft System Center Data Protection Manager Cookbook
By :

This recipe will cover the preparation steps that you must consider before you install the DPM server.
It's important to configure DPM properly and provide enough resources, or you will end up with quite a bad installation that could be part of the services you would like to provision within your data center. In the end, the DPM server can never work faster than what the underlying dependent architecture or technology allows.
There are certain requirements and considerations that you want to keep in mind when you deploy System Center DPM. By properly preparing a decent design, you can ensure that your DPM is scalable for future scenarios.
A common question that we have heard a lot is, can we deploy DPM in a virtual or physical machine? The DPM server can be deployed either in a physical deployment or via a virtual machine. However, running DPM in a virtual machine has more benefits, such as the following:
For DPM deployments, you need to have the following:
System Center Data Protection Manager (SC DPM) can use any type of disk that is presented as local attached storage. DPM can use any of the following:
A very important fact to be aware of is that the internet Small Computer System Interface (iSCSI) should not be considered as your primary choice for DPM backup storage due to some challenges that often occur when leveraging this technology. The most common challenge is that the initiation of the iSCSI target sometimes fails, and therefore the entire DPM disk volume fails.
iSCSI will work in smaller deployments with DPM, but if your main objective is to provide a more stable and performant solution, you should consider using Storage Spaces Direct (S2D). If your company does not provide S2D, you should use a Direct Attached Storage (DAS) solution and provision VHDX files to the virtual DPM servers. Microsoft recommendation moving forward is to create tiered volume using Storage Spaces with small SSD around 2 to 5% of total data disk to improve the ReFS cloning performance. As noted earlier, the recommendation is to deploy DPM as a virtual machine on top of Hyper-V.
As discussed earlier, DPM 2016 or later on Windows Server 2016 and Windows Server 2019 comes with MBS, which uses ReFS Block-Cloning technology for storing backup files. This leads to immense storage and performance savings. Furthermore, DPM uses incremental backups to store data. This means that it will transfer the complete data to be backed up initially. After that, it will transfer only the changed bits. Hence, the size of the data is determined by the initial size, the size of the changed bits (which depends on the churn percentage and the total size), the number of recovery points per day, and the retention period of the copies. Hence, small data, with a small churn, may take up more space if there are a large number of copies stored per day, and if they are retained for a long time.
Calculating DPM storage is one of the biggest challenges, since we need to calculate the size of the disks for storage pools that are used for the protection of data sources. Microsoft recommends that you figure out the actual size of the DPM data storage by multiplying the total amount of protected data by 1.5. For instance, if you want to protect 10 TB of data, you need 15 TB of storage from a minimal perspective. However, from a maximum perspective, you need to multiply the total amount of protected data by 3.
The DPM team released this calculator to help you provision storage for DPM by using storage savings and efficiency. Based on inputs, the calculator suggests the amount of storage that will be needed to store the backups to disk (on-premises) and to Azure Backup. For more information about Azure Backup, please refer to Chapter 10, Integrating DPM with Azure Backup.
You can plan the backup storage requirements by using the storage calculator in three simple steps, as follows:
You could also calculate the storage, including the growth rate. Note that this may change a bit depending on what you have for specific data types. With DPM, you can always add more storage later as needed. For monthly and yearly storage, this would need to be sent to tape and/or to Azure Backup. DPM cannot do long-term storage to disk.
Planning for decent hardware to host the DPM disk volume is very important. You don't need a premium disk solution for the DPM disk volume, but you can use decent hardware that can easily scale out. Adding DPM volumes can be done via the DPM console or via PowerShell. For more information on this topic, please read the Enabling Modern Backup Storage recipe in Chapter 2, DPM Post-Installation and Management Tasks.
It's important to know the limitations of a DPM server that has been upgraded from DPM 2012 R2 and used a legacy storage pool:
Follow this article to learn more on how to reduce DPM storage by enabling de-duplication on MBS: https://charbelnemnom.com/2016/10/how-to-reduce-dpm-2016-storage-consumption-by-enabling-deduplication-on-modern-backup-storage/.
Change the font size
Change margin width
Change background colour