
Intelligent Workloads at the Edge
By :

ML is an incredible technology making headway in solving today's problems. The ability to train computers to process great quantities of information in service of classifying new inputs and predicting results rivals, and in some applications exceeds, what the human brain can accomplish. For this reason, ML defines mechanisms for developing artificial intelligence (AI).
The vast computing power made available by the cloud has significantly reduced the amount of time it takes to train ML models. Data scientists and data engineers can train production models in hours instead of days. Advances in ML algorithms have made the models themselves ever more portable, meaning that running the models can work on computers with smaller compute and memory profiles. The implications of delivering portable ML models cannot be overstated.
Operating ML models at the edge helps us as architects deliver optimal edge solution design principles. By hosting a portable model at the edge, the proximity to the rest of our solution leads to four key benefits, outlined as follows:
These four key benefits are illustrated in the following diagram:
Figure 1.4 – The four key benefits of ML at the edge
Imagine a submersible drone that can bring with it an ML model that can classify images coming from a video feed. The drone can operate and make inferences on images away from any network connection and can discard any images that don't have any value. For example, if the drone's mission is to bring back only images of narwhals, then the drone doesn't need extensive quantities of storage to save every video clip for later analysis. The drone can use ML to classify images of narwhals and only preserve those for the trip back home. The cost of storage continues to drop over time, but in the precious bill of materials and space considerations of edge solutions such as this one, bringing a portable ML model can ultimately lead to significant cost savings.
The following diagram illustrates this concept:
Figure 1.5 – Illustration of a submersible drone concept processing photographs and storing only those where a local ML model identifies a narwhal in the subject
This book will teach you the basics of training an ML model from the kinds of machine data common to edge solutions, as well as how to deploy such models to the edge to take advantage of combining ML capabilities with the value proposition of running at the edge. We will also teach you about operating ML models at the edge, which means analyzing the performance of models, and how to set up infrastructure for deploying updates to models retrained in the cloud.
Outside the scope of this book's lessons are comprehensive deep dives on the data science driving the field of ML and AI. You do not need proficiency in that field to understand the patterns of ML-powered edge solutions. An understanding of how to work with input/output (I/O) buffers to read and write data in software is sufficient to work through the ML tools used in this book.
Next, let's review the kinds of tools we need to build and the specific tools we will use to build our solution.