Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Intelligent Workloads at the Edge
  • Toc
  • feedback
Intelligent Workloads at the Edge

Intelligent Workloads at the Edge

By : Indraneel (Neel) Mitra, Ryan Burke
4.8 (17)
close
Intelligent Workloads at the Edge

Intelligent Workloads at the Edge

4.8 (17)
By: Indraneel (Neel) Mitra, Ryan Burke

Overview of this book

The Internet of Things (IoT) has transformed how people think about and interact with the world. The ubiquitous deployment of sensors around us makes it possible to study the world at any level of accuracy and enable data-driven decision-making anywhere. Data analytics and machine learning (ML) powered by elastic cloud computing have accelerated our ability to understand and analyze the huge amount of data generated by IoT. Now, edge computing has brought information technologies closer to the data source to lower latency and reduce costs. This book will teach you how to combine the technologies of edge computing, data analytics, and ML to deliver next-generation cyber-physical outcomes. You’ll begin by discovering how to create software applications that run on edge devices with AWS IoT Greengrass. As you advance, you’ll learn how to process and stream IoT data from the edge to the cloud and use it to train ML models using Amazon SageMaker. The book also shows you how to train these models and run them at the edge for optimized performance, cost savings, and data compliance. By the end of this IoT book, you’ll be able to scope your own IoT workloads, bring the power of ML to the edge, and operate those workloads in a production setting.
Table of Contents (17 chapters)
close
1
Section 1: Introduction and Prerequisites
3
Section 2: Building Blocks
10
Section 3: Scaling It Up
13
Section 4: Bring It All Together

Chapter 1: Introduction to the Data-Driven Edge with Machine Learning

The purpose of this book is to share prescriptive patterns for the end-to-end (E2E) development of solutions that run at the edge, the space in the computing topology nearest to where the analog interfaces the digital and vice versa. Specifically, the book focuses on those edge use cases where machine learning (ML) technologies bring the most value and teaches you how to develop these solutions with contemporary tools provided by Amazon Web Services (AWS).

In this chapter, you will learn about the foundations for cyber-physical outcomes and the challenges, personas, and tools common to delivering these outcomes. This chapter briefly introduces the smart home and industrial internet of things (IoT) settings and sets the scene that will steer the hands-on project built throughout the book. It will describe how ML is transforming our ability to accelerate decision-making beyond the cloud. You will learn about the scope of the E2E project that you will build using AWS services such as AWS IoT Greengrass and Amazon SageMaker. You will also learn what kinds of technical requirements are needed before moving on to the first hands-on chapter, Chapter 2, Foundations of Edge Workloads.

The following topics will be covered in this chapter:

  • Living on the edge
  • Bringing ML to the edge
  • Tools to get the job done
  • Demand for smart home and industrial IoT
  • Setting the scene: A modern smart home solution
  • Hands-on prerequisites
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete