Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Quantum Computing with Silq Programming
  • Toc
  • feedback
Quantum Computing with Silq Programming

Quantum Computing with Silq Programming

By : Ganguly, Cambier
4.7 (9)
close
Quantum Computing with Silq Programming

Quantum Computing with Silq Programming

4.7 (9)
By: Ganguly, Cambier

Overview of this book

Quantum computing is a growing field, with many research projects focusing on programming quantum computers in the most efficient way possible. One of the biggest challenges faced with existing languages is that they work on low-level circuit model details and are not able to represent quantum programs accurately. Developed by researchers at ETH Zurich after analyzing languages including Q# and Qiskit, Silq is a high-level programming language that can be viewed as the C++ of quantum computers! Quantum Computing with Silq Programming helps you explore Silq and its intuitive and simple syntax to enable you to describe complex tasks with less code. This book will help you get to grips with the constructs of the Silq and show you how to write quantum programs with it. You’ll learn how to use Silq to program quantum algorithms to solve existing and complex tasks. Using quantum algorithms, you’ll also gain practical experience in useful applications such as quantum error correction, cryptography, and quantum machine learning. Finally, you’ll discover how to optimize the programming of quantum computers with the simple Silq. By the end of this Silq book, you’ll have mastered the features of Silq and be able to build efficient quantum applications independently.
Table of Contents (19 chapters)
close
1
Section 1: Essential Background and Introduction to Quantum Computing
6
Section 2: Challenges in Quantum Programming and Silq Programming
10
Section 3: Quantum Algorithms Using Silq Programming
14
Section 4: Applications of Quantum Computing

Implementing phase estimation using Silq

In this section, you are going to learn how to implement the phase estimation algorithm from scratch using the algorithmic steps we have gone through in the Getting started with the phase estimation algorithm section. Since the steps of the phase estimation algorithm are defined in the previous section, you will now be able to understand the coding of the algorithm in Silq in a very easy manner.

Take a look at Figure 10.3. It is always better to visualize the circuit because it helps in understanding the internal workings of the algorithm. The following diagram shows the phase estimation circuit:

Figure 10.3 – Phase estimation circuit

From Figure 10.3, it becomes clear that the controlled-U operations are applied as we have implemented in the code and the inverse QFT is being performed at the very end of the circuit. Finally, measurement is taken for the first-register qubits, which provide an estimated value...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete