Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering Concurrency in Python
  • Toc
  • feedback
Mastering Concurrency in Python

Mastering Concurrency in Python

By : Quan Nguyen
1 (1)
close
Mastering Concurrency in Python

Mastering Concurrency in Python

1 (1)
By: Quan Nguyen

Overview of this book

Python is one of the most popular programming languages, with numerous libraries and frameworks that facilitate high-performance computing. Concurrency and parallelism in Python are essential when it comes to multiprocessing and multithreading; they behave differently, but their common aim is to reduce the execution time. This book serves as a comprehensive introduction to various advanced concepts in concurrent engineering and programming. Mastering Concurrency in Python starts by introducing the concepts and principles in concurrency, right from Amdahl's Law to multithreading programming, followed by elucidating multiprocessing programming, web scraping, and asynchronous I/O, together with common problems that engineers and programmers face in concurrent programming. Next, the book covers a number of advanced concepts in Python concurrency and how they interact with the Python ecosystem, including the Global Interpreter Lock (GIL). Finally, you'll learn how to solve real-world concurrency problems through examples. By the end of the book, you will have gained extensive theoretical knowledge of concurrency and the ways in which concurrency is supported by the Python language
Table of Contents (22 chapters)
close

The concept of livelock

The concept of livelock is connected to deadlock; some even consider it an alternate version of deadlock. In a livelock situation, the processes (or threads) in the concurrent program are able to switch their states; in fact, they switch states constantly. Yet, they simply switch back and forth infinitely, and no progress is made. We will now consider an actual scenario of livelock.

Suppose that a pair of spouses are eating dinner together at a table. They only have one fork to share with each other, so only one of them can eat at any given point. Additionally, the spouses are really polite to each other, so even if one spouse is hungry and wants to eat their food, they will leave the fork on the table if their partner is also hungry. This specification is at the heart of creating a livelock for this problem: when both spouses are hungry, each will wait...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete