Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Architectural Patterns
  • Table Of Contents Toc
  • Feedback & Rating feedback
Architectural Patterns

Architectural Patterns

By : Murali, Pethuru Raj, J, Pethuru Raj Chelliah
2.4 (5)
close
close
Architectural Patterns

Architectural Patterns

2.4 (5)
By: Murali, Pethuru Raj, J, Pethuru Raj Chelliah

Overview of this book

Enterprise Architecture (EA) is typically an aggregate of the business, application, data, and infrastructure architectures of any forward-looking enterprise. Due to constant changes and rising complexities in the business and technology landscapes, producing sophisticated architectures is on the rise. Architectural patterns are gaining a lot of attention these days. The book is divided in three modules. You'll learn about the patterns associated with object-oriented, component-based, client-server, and cloud architectures. The second module covers Enterprise Application Integration (EAI) patterns and how they are architected using various tools and patterns. You will come across patterns for Service-Oriented Architecture (SOA), Event-Driven Architecture (EDA), Resource-Oriented Architecture (ROA), big data analytics architecture, and Microservices Architecture (MSA). The final module talks about advanced topics such as Docker containers, high performance, and reliable application architectures. The key takeaways include understanding what architectures are, why they're used, and how and where architecture, design, and integration patterns are being leveraged to build better and bigger systems.
Table of Contents (13 chapters)
close
close

Big data design patterns

This section covers most prominent big data design patterns by various data layers such as data sources and ingestion layer, data storage layer and data access layer.

Data sources and ingestion layer

Enterprise big data systems face a variety of data sources with non-relevant information (noise) alongside relevant (signal) data. Noise ratio is very high compared to signals, and so filtering the noise from the pertinent information, handling high volumes, and the velocity of data is significant. This is the responsibility of the ingestion layer. The common challenges in the ingestion layers are as follows:

  • Multiple data source load and prioritization
  • Ingested data indexing and tagging
  • Data validation...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY